Derived Categories of Coherent Sheaves on Calabi-yau Fibrations
نویسندگان
چکیده
In this note we prove that the derived categories of an abelian fibration and its dual are derived equivalent if and only if there is fiberwise equivalence. We also study the problem for K3−fibrations.
منابع مشابه
Derived categories of small toric Calabi-Yau 3-folds and curve counting invariants
We first construct a derived equivalence between a small crepant resolution of an affine toric Calabi-Yau 3-fold and a certain quiver with a superpotential. Under this derived equivalence we establish a wallcrossing formula for the generating function of the counting invariants of perverse coherent sheaves. As an application we provide some equations on Donaldson-Thomas, Pandeharipande-Thomas a...
متن کاملStable Rank-2 Bundles on Calabi-yau Manifolds
Recently there is a surge of research interest in the construction of stable vector bundles on Calabi-Yau manifolds motivated by questions from string theory. An interesting aspect of the moduli spaces of stable sheaves on Calabi-Yau manifolds is their relation to the higher dimensional gauge theory studied by Donaldson, R. Thomas and Tian et al. [D-T, Tho, Tia]. A holomorphic Casson invariant ...
متن کاملDeformed Calabi-yau Completions
We define and investigate deformed n-Calabi-Yau completions of homologically smooth differential graded (=dg) categories. Important examples are: deformed preprojective algebras of connected non Dynkin quivers, Ginzburg dg algebras associated to quivers with potentials and dg categories associated to the category of coherent sheaves on the canonical bundle of a smooth variety. We show that defo...
متن کاملMaps, Sheaves, and K3 Surfaces
The conjectural equivalence of curve counting on Calabi-Yau 3-folds via stable maps and stable pairs is discussed. By considering Calabi-Yau 3-folds with K3 fibrations, the correspondence naturally connects curve and sheaf counting on K3 surfaces. New results and conjectures (with D. Maulik) about descendent integration on K3 surfaces are announced. The recent proof of the Yau-Zaslow conjecture...
متن کاملTriangulated Categories of Singularities and D-branes in Landau-ginzburg Models
In spite of physics terms in the title, this paper is purely mathematical. Its purpose is to introduce triangulated categories related to singularities of algebraic varieties and establish a connection of these categories with D-branes in Landau-Ginzburg models It seems that two different types of categories can be associated with singularities (or singularities of maps). Categories of the firs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009